**Download VTU MEDICAL ELECTRONICS 2010 Syllabus [PDF]**

** Download MEDICAL ELECTRONICS 2010 Scheme [PDF]**

### ANALOG ELECTRONIC CIRCUITS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code : 10ES32

IA Marks : 25

Exam Marks : 100

**PART – A**

UNIT 1:

Diode Circuits: Diode Resistance, Diode equivalent circuits, Transition and diffusion capacitance, Reverse recovery time, Load line analysis, Rectifiers, Clippers and clampers.

UNIT 2:

Transistor Biasing: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, DC bias with voltage feedback, Miscellaneous bias configurations, Design operations, Transistor switching networks, PNP transistors, Bias stabilization.

UNIT 3:

Transistor at Low Frequencies: BJT transistor modeling, Hybrid equivalent model, CE Fixed bias configuration, Voltage divider bias, Emitter follower, CB configuration, Collector feedback configuration, Hybrid equivalent model.

UNIT 4:

Transistor Frequency Response: General frequency considerations, low frequency response, Miller effect capacitance, High frequency response, multistage frequency effects.

**PART – B**

UNIT 5:

(a) General Amplifiers: Cascade connections, Cascode connections, Darlington connections.

(b) Feedback Amplifier: Feedback concept, Feedback connections type, Practical feedback circuits.

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class A amplifier, Transformer coupled Class A amplifiers, Class B amplifier operations, Class B amplifier circuits, Amplifier distortions.

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only)

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

**TEXT BOOK:**

- 1. “Electronic Devices and Circuit Theory”, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

**REFERENCE BOOKS:**

- 1. ‘Integrated Electronics’, Jacob Millman & Christos C. Halkias, Tata – McGraw Hill, 1991 Edition
- 2. “Electronic Devices and Circuits”, David A. Bell, PHI, 4th Edition, 2004
- 3. “Analog Circuits: A Fundamental Approach”, U B Mahadevaswamy, Pearson/Saguine, 2007

### ENGINEERING MATHEMATICS – III

CODE: 10 MAT 31

IA Marks: 25

Exam Marks:100

### Click Here For MATHEMATICS – 3 Syllabus

### LOGIC DESIGN

(Common to EC/TC/EE/IT/BM/ML)

Sub Code : 10ES33

IA Marks : 25

Exam Marks : 100

**PART – A**

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3, 4 and 5 variables, Incompletely specified functions (Don’t Care terms), Simplifying Max term equations.

UNIT 2:

Principles of combinational Logic-2: Quine-McCluskey minimization technique- Quine-McCluskey using don’t care terms, Reduced Prime Implicant Tables, Map entered variables.

UNIT 3:

Analysis and design of combinational logic – I: General approach, Decoders- BCD decoders, Encoders.

UNIT 4:

Analysis and design of combinational logic – II: Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading

full adders, Look ahead carry, Binary comparators.

**PART – B**

UNIT 5:

Sequential Circuits – 1: Basic Bistable Element, Latches, SR Latch, Application of SR Latch, A Switch Debouncer, The SR Latch, The gated SR Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-Triggered Flip-Flops): The Master- Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop, Negative-Edge Triggered D Flip-Flop.

UNIT 6:

Sequential Circuits – 2: Characteristic Equations, Registers, Counters – Binary Ripple Counters, Synchronous Binary counters, Counters based on Shift Registers, Design of a Synchronous counters, Design of a Synchronous Mod-6 Counter using clocked JK Flip-Flops Design of a Synchronous Mod-6 Counter using clocked D, T, or SR Flip-Flops

UNIT 7:

Sequential Design – I: Introduction, Mealy and Moore Models, State Machine Notation, Synchronous Sequential Circuit Analysis,

UNIT 8:

Sequential Design – II: Construction of state Diagrams, Counter Design

**TEXT BOOKS:**

- 1. “Digital Logic Applications and Design”, John M Yarbrough, Thomson Learning, 2001.
- 2. “Digital Principles and Design “, Donald D Givone, Tata McGraw Hill Edition, 2002.

**REFERENCE BOOKS:**

- 1. “Fundamentals of logic design”, Charles H Roth, Jr; Thomson Learning, 2004.
- 2. “Logic and computer design Fundamentals”, Mono and Kim, Pearson, Second edition, 2001.
- 3. “Logic Design”, Sudhakar Samuel, Pearson/Saguine, 2007

### NETWORK ANALYSIS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code : 10ES34

IA Marks : 25

Exam Marks : 100

**PART – A**

UNIT 1:

Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh.

UNIT 2:

Network Topology: Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set and cut-set schedules, Formulation of equilibrium equations in matrix form, Solution of resistive networks, Principle of duality.

UNIT 3:

Network Theorems – 1: Superposition, Reciprocity and Millman’s theorems.

UNIT 4:

Network Theorems – II:

Thevinin’s and Norton’s theorems; Maximum Power transfer theorem

**PART – B**

UNIT 5: Resonant Circuits: Series and parallel resonance, frequency-response of series and Parallel circuits, Q –factor, Bandwidth.

UNIT 6:

Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.

UNIT 7:

Laplace Transformation & Applications : Solution of networks, step, ramp and impulse responses, waveform Synthesis

UNIT 8:

Two port network parameters: Definition of z, y, h and transmission parameters, modeling with these parameters, relationship between parameters sets.

**TEXT BOOKS:**

- 1. “Network Analysis”, M. E. Van Valkenburg, PHI / Pearson Education, 3rd Edition. Reprint 2002.
- 2. “Networks and systems”, Roy Choudhury, 2nd edition, 2006 re-print, New Age International Publications.

**REFERENCE BOOKS:**

- 1. “Engineering Circuit Analysis”, Hayt, Kemmerly and DurbinTMH 6th Edition, 2002
- 2. “Analysis of Linear Systems”, David K. Cheng, Narosa Publishing House, 11th reprint, 2002

### ELECTRONIC INSTRUMENTATION

(Common to EC/TC/IT/BM/ML)

Sub Code : 10IT35

IA Marks : 25

Exam Marks : 100

**PART – A**

UNIT – 1:

Introduction

(a) Measurement Errors: Gross errors and systematic errors, Absolute and relative errors, Accuracy, Precision, Resolution and Significant figures.

(b) Voltmeters and Multimeters Introduction, Multirange voltmeter, Extending voltmeter ranges, Loading, AC voltmeter using Rectifiers – Half wave and full wave, Peak responding and True RMS voltmeters.

UNIT – 2:

Digital Instruments

Digital Voltmeters – Introduction, DVM’s based on V – T, V – F and Successive approximation principles, Resolution and sensitivity, General specifications, Digital Multi-meters, Digital frequency meters, Digital measurement of time.

UNIT – 3:

Oscilloscopes

Introduction, Basic principles, CRT features, Block diagram and working of each block, Typical CRT connections, Dual beam and dual trace CROs, Electronic switch.

UNIT – 4:

Special Oscilloscopes

Delayed time-base oscilloscopes, Analog storage, Sampling and Digital storage oscilloscopes.

**PART – B**

UNIT – 5:

Signal Generators

Introduction, Fixed and variable AF oscillator, Standard signal generator, Laboratory type signal generator, AF sine and Square wave generator, Function generator, Square and Pulse generator, Sweep frequency generator, Frequency synthesizer.

UNIT – 6:

Measurement of resistance, inductance and capacitance Whetstone’s bridge, Kelvin Bridge; AC bridges, Capacitance Comparison Bridge, Maxwell’s bridge, Wein’s bridge, Wagner’s earth connection

UNIT – 7:

Transducers – I

Introduction, Electrical transducers, Selecting a transducer, Resistive transducer, Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, Inductive transducer, Differential output transducers and LVDT.

UNIT – 8:

Miscellaneous Topics

(a) Transducers – II –Piezoelectric transducer, Photoelectric transducer, Photovoltaic transducer, Semiconductor photo devices, Temperature transducers- RTD, Thermocouple .

(b) Display devices: Digital display system, classification of display, Display devices, LEDs, LCD displays.

(c) Bolometer and RF power measurement using Bolometer

(d) Introduction to Signal conditioning.

**TEXT BOOKS:**

- 1. “Electronic Instrumentation”, H. S. Kalsi, TMH, 2004
- 2. “Electronic Instrumentation and Measurements”, David A Bell, PHI / Pearson Education, 2006.

**REFERENCE BOOKS:**

- 1. “Principles of measurement systems”, John P. Beately, 3rd Edition, Pearson Education, 2000
- 2. “Modern electronic instrumentation and measuring techniques”, Cooper D & A D Helfrick, PHI, 1998.
- 3. Electronics & electrical measurements, A K Sawhney, , Dhanpat Rai & sons, 9th edition.

### FIELD THEORY

(Common to EC/TC/ML/EE)

Sub Code : 10ES36

IA Marks : 25

Exam Marks : 100

**PART – A**

UNIT 1:

a. Coulomb’s Law and electric field intensity: Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge.

b. Electric flux density, Gauss’ law and divergence: Electric flux density, Gauss’ law, Divergence, Maxwell’s First equation(Electrostatics), vector operator ı and divergence theorem.

UNIT 2:

a. Energy and potential : Energy expended in moving a point charge in an electric field, The line integral, Definition of potential difference and Potential, The potential field of a point charge and system of charges, Potential gradient , Energy density in an electrostatic field.

b. Conductors, dielectrics and capacitance: Current and current density, Continuity of current, metallic conductors, Conductor properties and boundary conditions, boundary conditions for perfect Dielectrics, capacitance and examples.

UNIT 3:

Poisson’s and Laplace’s equations: Derivations of Poisson’s and Laplace’s Equations, Uniqueness theorem, Examples of the solutions of Laplace’s and Poisson’s equations.

UNIT 4:

The steady magnetic field: Biot-Savart law, Ampere’s circuital law, Curl, Stokes’ theorem, magnetic flux and flux density, scalar and Vector magnetic potentials.

**PART – B**

UNIT 5:

a. Magnetic forces: Force on a moving charge and differential current element, Force between differential current elements, Force and torque on a closed circuit.

b. Magnetic materials and inductance: Magnetization and permeability, Magnetic boundary conditions, Magnetic circuit, Potential energy and forces on magnetic materials, Inductance and Mutual Inductance.

UNIT 6:

Time varying fields and Maxwell’s equations: Faraday’s law, displacement current, Maxwell’s equation in point and Integral form, retarded potentials.

UNIT 7:

Uniform plane wave: Wave propagation in free space and dielectrics, Poynting’s theorem and wave power, propagation in good conductors – (skin effect).

UNIT 8:

Plane waves at boundaries and in dispersive media: Reflection of uniform plane waves at normal incidence, SWR, Plane wave propagation in general directions.

**TEXT BOOK:**

1. “Engineering Electromagnetics”, William H Hayt Jr. and John A Buck, Tata McGraw-Hill, 7th edition, 2006

**REFERENCE BOOKS:**

- 1. “Electromagnetics with Applications”, John Krauss and Daniel A Fleisch, McGraw-Hill, 5th edition, 1999
- 2. “Electromagnetic Waves And Radiating Systems,” Edward C. Jordan and Keith G Balmain, Prentice – Hall of India / Pearson Education, 2nd edition, 1968.Reprint 2002
- 3. “Field and Wave Electromagnetics”, David K Cheng, Pearson

### ANALOG ELECTRONICS LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code : 10ESL37

IA Marks : 25

Exam Marks : 50

1. Wiring of RC coupled Single stage FET & BJT amplifier and determination of the gain-frequency response, input and output impedances.

2. Wiring of BJT Darlington Emitter follower with and without bootstrapping and determination of the gain, input and output impedances (Single circuit) (One Experiment)

3. Wiring of a two stage BJT Voltage series feed back amplifier and determination of the gain, Frequency response, input and output impedances with and without feedback (One Experiment)

4. Wiring and Testing for the performance of BJT-RC Phase shift Oscillator for f0 ≤ 10 KHz

5. Testing for the performance of BJT – Hartley & Colpitts Oscillators for RF range f0 ≥100KHz.

6. Testing for the performance of BJT -Crystal Oscillator for f0 > 100 KHz

7 Testing of Diode clipping (Single/Double ended) circuits for peak clipping, peak detection

8. Testing of Clamping circuits: positive clamping /negative clamping.

9. Testing of a transformer less Class – B push pull power amplifier and determination of its conversion efficiency.

10. Testing of Half wave, Full wave and Bridge Rectifier circuits with and without Capacitor filter. Determination of ripple factor, regulation and efficiency

11. Verification of Thevinin’s Theorem and Maximum Power Transfer theorem for DC Circuits.

12. Characteristics of Series and Parallel resonant circuits.

### LOGIC DESIGN LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code : 10ESL38

IA Marks : 25

Exam Marks : 50

1. Simplification, realization of Boolean expressions using logic gates/Universal gates.

2. Realization of Half/Full adder and Half/Full Subtractors using logic gates.

3. (i) Realization of parallel adder/Subtractors using 7483 chip

(ii) BCD to Excess-3 code conversion and vice versa.

4. Realization of Binary to Gray code conversion and vice versa

5. MUX/DEMUX – use of 74153, 74139 for arithmetic circuits and code converter.

6. Realization of One/Two bit comparator and study of 7485 magnitude comparator.

7. Use of a) Decoder chip to drive LED display and b) Priority encoder.

8. Truth table verification of Flip-Flops: (i) JK Master slave (ii) T type and (iii) D type.

9. Realization of 3 bit counters as a sequential circuit and MOD – N counter design (7476, 7490, 74192, 74193).

10. Shift left; Shift right, SIPO, SISO, PISO, PIPO operations using 74S95.

11. Wiring and testing Ring counter/Johnson counter.

12. Wiring and testing of Sequence generator.